Minibody: A novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts.
نویسندگان
چکیده
A novel engineered antibody fragment (VL-VH-CH3, or "minibody") with bivalent binding to carcinoembryonic antigen (CEA) was produced by genetic fusion of a T84.66 (anti-CEA) single-chain antibody (scFv) to the human IgG1 CH3 domain. Two designs for the connecting peptide were evaluated. In the T84.66/212 LD minibody, a two-amino acid linker (generated by fusion of restriction sites) was used to join VH and CH3. In the T84.66/212 Flex minibody, the human IgG1 hinge plus an additional 10 residues were used as the connecting peptide. Size exclusion chromatography of purified minibodies demonstrated that both proteins had assembled into Mr80,000 dimers as expected. Furthermore, analysis by SDS-PAGE under nonreducing conditions was consistent with disulfide bond formation in the hinge of the T84.66 Flex minibody. Purified minibodies retained high affinity for CEA (KA, 2 x 10(9) M(-1)) and demonstrated bivalent binding to antigen. Tumor targeting properties were evaluated in vivo using athymic mice bearing LS174T human colon carcinoma xenografts. 123I-labeled T84.66 minibodies demonstrated rapid, high tumor uptake, reaching 17% injected dose/gram (%ID/g) for the LD minibody and 33%ID/g for the Flex minibody at 6 h following injection. Radioiodinated minibody also cleared rapidly from the circulation, yielding high tumor:blood uptake ratios: 44.5 at 24 h for the LD minibody and 64.9 at 48 h for the Flex minibody. Rapid localization by the T84.66/212 Flex minibody allowed imaging of xenografts at 4 and 19 h after administration.
منابع مشابه
Minibody: A Novel Engineered Anti-Carcinoembryonic Antigen Antibody Fragment (Single-Chain Fv-CH3) Which Exhibits Rapid, High-Level Targeting of Xenografts1
A novel engineered antibody fragment (VL-VH-CH3, or "minibody") with bivalent binding to carcinoembryonic antigen (CEA) was produced by genetic fusion of a T84.66 (anti-CEA) single-chain antibody (scFv) to the human IgGl CH3 domain. Two designs for the connecting peptide were evaluated. In the 184.66/212 LD inin¡body,a two-amino acid linker (generated by fusion of restriction sites) was used t...
متن کاملHigh-resolution microPET imaging of carcinoembryonic antigen-positive xenografts by using a copper-64-labeled engineered antibody fragment.
Rapid imaging by antitumor antibodies has been limited by the prolonged targeting kinetics and clearance of labeled whole antibodies. Genetically engineered fragments with rapid access and high retention in tumor tissue combined with rapid blood clearance are suitable for labeling with short-lived radionuclides, including positron-emitting isotopes for positron-emission tomography (PET). An eng...
متن کاملOptimizing radiolabeled engineered anti-p185HER2 antibody fragments for in vivo imaging.
We have recently described the in vivo properties of an iodinated anti-p185HER2 engineered antibody fragment [minibody (scFv-C(H)3)2; 80 kDa], made from the internalizing 10H8 monoclonal antibody. Although the 10H8 minibody showed excellent binding to the target in vitro, only modest tumor uptake [5.6 +/- 1.7% injected dose per gram (ID/g) of tissue] was achieved in nude mice bearing MCF7/HER2 ...
متن کاملPilot Trial Evaluating an I-Labeled 80-Kilodalton Engineered Anticarcinoembryonic Antigen Antibody Fragment (cT84.66 Minibody) in Patients with Colorectal Cancer
Purpose: The chimeric T84.66 (cT84.66) minibody is a novel engineered antibody construct (VL-linker-VH-CH3; 80 kDa) that demonstrates bivalent and high affinity (4 10 M ) binding to carcinoembryonic antigen (CEA). The variable regions (VL and VH) assemble to form the antigencombining sites, and the protein forms dimers through selfassociation of the CH3 domains. In animal models, the minibody d...
متن کاملRadionuclide-Based Cancer Imaging Targeting the Carcinoembryonic Antigen
Carcinoembryonic antigen (CEA), highly expressed in many cancer types, is an important target for cancer diagnosis and therapy. Radionuclide-based imaging techniques (gamma camera, single photon emission computed tomography [SPECT] and positron emission tomography [PET]) have been extensively explored for CEA-targeted cancer imaging both preclinically and clinically. Briefly, these studies can ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 56 13 شماره
صفحات -
تاریخ انتشار 1996